當前位置:首頁 » 人物圖片 » python提取圖片中某個顏色
擴展閱讀
美女健身跳河視頻 2023-08-31 22:08:21
西方貴族美女照片真人 2023-08-31 22:08:15

python提取圖片中某個顏色

發布時間: 2023-05-23 19:35:00

1. python處理圖片數據

生成一張純色的圖片

先設置圖片的顏色,接著利用Image模塊的new方法新生成一張圖片,png格式的圖片需要設置成rgba,類似的還有rgb,L(灰度圖等),尺寸設定為640,480,這個可以根據自己的情況設定,顏色同樣如此。

2. 用python寫識別圖片主要顏色的程序

#-*-coding:utf-8-*-

importcolorsys

defget_dominant_color(image):

#顏色模式轉換,以便輸出rgb顏色值
image=image.convert('RGBA')

#生成縮略圖,減少計算量,減小cpu壓力
image.thumbnail((200,200))

max_score=None
dominant_color=None

forcount,(r,g,b,a)inimage.getcolors(image.size[0]*image.size[1]):
#跳過純黑色
ifa==0:
continue

saturation=colorsys.rgb_to_hsv(r/255.0,g/255.0,b/255.0)[1]

y=min(abs(r*2104+g*4130+b*802+4096+131072)>>13,235)

y=(y-16.0)/(235-16)

#忽略高亮色
ify>0.9:
continue

#Calculatethescore,.
#Add0.1tothesaturationsowedon'tcompletelyignoregrayscale
#,butstillgivethemalow
#weight.
score=(saturation+0.1)*count

ifscore>max_score:
max_score=score
dominant_color=(r,g,b)

returndominant_color

if__name__=="__main__":
fromPILimportImage
importos

path=r'.\pics\'
fp=open('file_color.txt','w')
forfilenameinos.listdir(path):
printpath+filename
try:
color=get_dominant_color(Image.open(path+filename))
fp.write('Thecolorof'+filename+'is'+str(color)+' ')
except:
print"Thisfileformatisnotsupport"
fp.close()


pics文件夾和python程序在一個目錄下,產生的文件名file_color.txt也在這個目錄下。

看看能否幫到你

3. python 如何只選中圖片里的一種顏色 變更為另一個種顏色

importImage
img=Image.open("pic.jpg")

foriinxrange(300):
forjinxrange(300):

r,g,b=img.getpixel((i,j))
if(b>gandb>r):#對藍色進行判斷
b=127
g=127
r=127

img.putpixel((i,j),(r,g,b))

img.show()

4. 用python K值聚類識別圖片主要顏色的程序,演算法python代碼已經有了

難得被人求助一次, 這個必須回答一下. 不過你的需求確實沒有寫得太清楚. 根據k值演算法出來的是主要顏色有三個, 所以我把三個顏色都打在記事本里了. 如果和你的需求有誤, 請自行解決吧.


另外這里需要用到numpy的庫, 希望你裝了, 如果沒裝, 這個直接安裝也比較麻煩, 可以看一下portablepython的綠色版。


代碼如下:


#-*-coding:utf-8-*-
importImage
importrandom
importnumpy
classCluster(object):
def__init__(self):
self.pixels=[]
self.centroid=None
defaddPoint(self,pixel):
self.pixels.append(pixel)
defsetNewCentroid(self):
R=[colour[0]forcolourinself.pixels]
G=[colour[1]forcolourinself.pixels]
B=[colour[2]forcolourinself.pixels]
R=sum(R)/len(R)
G=sum(G)/len(G)
B=sum(B)/len(B)
self.centroid=(R,G,B)
self.pixels=[]
returnself.centroid
classKmeans(object):
def__init__(self,k=3,max_iterations=5,min_distance=5.0,size=200):
self.k=k
self.max_iterations=max_iterations
self.min_distance=min_distance
self.size=(size,size)
defrun(self,image):
self.image=image
self.image.thumbnail(self.size)
self.pixels=numpy.array(image.getdata(),dtype=numpy.uint8)
self.clusters=[Noneforiinrange(self.k)]
self.oldClusters=None
randomPixels=random.sample(self.pixels,self.k)
foridxinrange(self.k):
self.clusters[idx]=Cluster()
self.clusters[idx].centroid=randomPixels[idx]
iterations=0
whileself.shouldExit(iterations)isFalse:
self.oldClusters=[cluster.centroidforclusterinself.clusters]
printiterations
forpixelinself.pixels:
self.assignClusters(pixel)
forclusterinself.clusters:
cluster.setNewCentroid()
iterations+=1
return[cluster.centroidforclusterinself.clusters]
defassignClusters(self,pixel):
shortest=float('Inf')
forclusterinself.clusters:
distance=self.calcDistance(cluster.centroid,pixel)
ifdistance<shortest:
shortest=distance
nearest=cluster
nearest.addPoint(pixel)
defcalcDistance(self,a,b):
result=numpy.sqrt(sum((a-b)**2))
returnresult
defshouldExit(self,iterations):
ifself.oldClustersisNone:
returnFalse
foridxinrange(self.k):
dist=self.calcDistance(
numpy.array(self.clusters[idx].centroid),
numpy.array(self.oldClusters[idx])
)
ifdist<self.min_distance:
returnTrue
ifiterations<=self.max_iterations:
returnFalse
returnTrue
#############################################
#
defshowImage(self):
self.image.show()
defshowCentroidColours(self):
forclusterinself.clusters:
image=Image.new("RGB",(200,200),cluster.centroid)
image.show()
defshowClustering(self):
localPixels=[None]*len(self.image.getdata())
foridx,pixelinenumerate(self.pixels):
shortest=float('Inf')
forclusterinself.clusters:
distance=self.calcDistance(
cluster.centroid,
pixel
)
ifdistance<shortest:
shortest=distance
nearest=cluster
localPixels[idx]=nearest.centroid
w,h=self.image.size
localPixels=numpy.asarray(localPixels)
.astype('uint8')
.reshape((h,w,3))
colourMap=Image.fromarray(localPixels)
colourMap.show()

if__name__=="__main__":
fromPILimportImage
importos

k_image=Kmeans()
path=r'.\pics\'
fp=open('file_color.txt','w')
forfilenameinos.listdir(path):
printpath+filename
try:
color=k_image.run(Image.open(path+filename))
fp.write('Thecolorof'+filename+'is'+str(color)+' ')
except:
print"Thisfileformatisnotsupport"
fp.close()