Ⅰ 什么是知识图谱
知识图谱,是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。
Ⅱ 如何构建知识图谱
自己建吗可以下载图谱软件构建
http://www.cnblogs.com/R0b1n/p/5224065.html可以参考一下这个
SPSS: 大型统计分析软件,商用软件。具有完整的数据输入、编辑、统计分析、报表、图形绘制等功能。常用于多元统计分析、数据挖掘和数据可视化。
Bibexcel: 瑞典科学计量学家Persoon开发的科学计量学软件,用于科学研究免费软件。具有文献计量分析、引文分析、共引分析、耦合分析、聚类分析和数据可视化等功能。可用于分析ISI的SCI、SSCI和A&HCI文献数据库。
HistCite: Eugene Garfield等人于2001年开发的科学文献引文链接分析和可视化系统,免费软件。可对ISI的SCI、SSCI和SA&HCI等文献数据库的引文数据进行计量分析,生成文献、作者和期刊的引文矩阵和实时动态引文编年图。直观的反映文献之间的引用关系、主题的宗谱关系、作者历史传承关系、科学知识发展演进等。
CiteSpace: 陈超美博士开发的专门用于科学知识图谱绘制的免费软件。国内使用最多知识图谱绘制软件。可用于追踪研究领域热点和发展趋势,了解研究领域的研究前沿及演进关键路径,重要的文献、作者及机构。可用于对ISI、CSSCI和CNKI等多种文献数据库进行分析。
TDA: Thomson Data Analyzer(TDA)是Thomson集团基于VantagePoint开发文献分析工具。商用软件。具有去重、分段等数据预处理功能;可形成共现矩阵、因子矩阵等多种分析矩阵;可使用Pearson、Cosine等多种算法进行数据标准化;可进行知识图谱可视化展示。
Sci2 Tools: 印第安纳大学开发的用于研究科学结构的模块化工具可从时间、空间、主题、网络分析和可视化等多角度,分析个体、局部和整体水平的知识单元。
ColPalRed: Gradnada大学开发的共词单元文献分析软件。商用软件。结构分析,在主题网络中展现知识(词语及其关系);战略分析,通过中心度和密度,在主题网络中为主题定位;动态分析,分析主题网络演变,鉴定主题路径和分支。
Leydesdorff: 系类软件。阿姆斯特丹大学Leydesdorff开发的这对文献计量的小程序集合。处理共词分析、耦合分析、共引分析等知识单元体系。使用“层叠图”实现可视化知识的静态布局和动态变化。
Word Smith: 词频分析软件。可将文本中单词出现频率排序和找出单词的搭配词组。
NWB Tools: 印第安纳大学开发的对大规模知识网络进行建模、分析和可视化工具. 数据预处理;构建共引、共词、耦合等多种网络;可用多种方法进行网络分析;可进行可视化展示.
Ucinet NetDraw: Ucinet是社会网络分析工具。包括网络可视化工具Net Draw。用于处理多种关系数据,可通过节点属性对节点的颜色、形状和大小等进行设置。用于社交网络分析和网络可视化。
Pajek: 来自斯洛文尼亚的分析大型网络的社会网络分析免费软件。Pajek基于图论、网络分析和可视化技术,主要用于大型网络分解,网络关系展示,科研作者合作网络图谱的绘制。
VOSviewer: 荷兰莱顿大学开发的文献可视化分析工具。使用基于VOS聚类技术技术实现知识单元可视化工具。突出特点可视化能力强,适合于大规模样本数据。四种视图浏览:标签视图、密度视图、聚类视图和分散视图。
[4]陈悦, 刘则渊, 陈劲等. 科学知识图谱的发展历程[J]. 科学学研究, 2008, (03): 449-460.
[5]Shiffrin, R.M., and Katy Börner. Mapping Knowledge Domains[C]. Proc. Proceedings of the National Academy of Sciences of the United States of America pp. 5183-5185.
[6]Börner, K., Chen, C.和Boyack, K.W. Visualizing knowledge domains[J]. Annual review of information science and technology, 2003, 37, (1): 179-255.
[7]CM, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57, (3): 359-377.
[8]陈悦和刘则渊. 悄然兴起的科学知识图谱[J]. 科学学研究, 2005, (02): 149-154.
[9]邱均平. 信息计量学[M]. (武汉大学出版社, 2007. 2007).
[10]沙勇忠和牛春华. 信息分析[M]. (科学出版社, 2009. 2009).
[11]塞沃尔, 建军和煦. 链接分析: 信息科学的研究方法[M]. (东南大学出版社, 2009. 2009).
[12]Egghe, L.和Rousseau, R. Introction to informetrics: Quantitative methods in library, documentation and information science[J]. 1990
[13]韩家炜, 坎伯, 裴健等. 数据挖掘: 概念与技术[M]. (机械工业出版社, 2007. 2007).
[14]Wasserman, S. Social network analysis: Methods and applications[M]. (Cambridge university press, 1994. 1994).
[15]Persson, O., R. Danell, J. Wiborg Schneider. How to use Bibexcel for various types of bibliometric analysis[C]. Proc. International Society for Scientometrics and Informetrics., Leuven, Belgium2009 pp. 9–24.
[16]Yang, Y., Akers, L., Klose, T.等. Text mining and visualization tools–impressions of emerging capabilities[J]. World Patent Information, 2008, 30, (4): 280-293.
[17]Börner, K., Huang, W., Linnemeier, M.等. Rete-netzwerk-red: analyzing and visualizing scholarly networks using the Network Workbench Tool[J]. Scientometrics, 2010, 83, (3): 863-876.
[18]廖胜姣. 科学知识图谱绘制工具:SPSS和TDA的比较研究[J]. 图书馆学研究, 2011, (05): 46-49.
[19]Scott, M. WordSmith tools[M]. (Oxford: Oxford University Press, 1996. 1996).
[20]Batagelj, V.和Mrvar, A. Pajek - Program for Large Network Analysis[M]. (1998. 1998).
[21]Borgatti, S.P., Everett, M.G.和Freeman, L.C. Ucinet for Windows: Software for social network analysis[J]. 2002
[22]Van Eck, N.J.和Waltman, L. VOSviewer: A computer program for bibliometric mapping[J]. 2009
Ⅲ 什么软件可以学识图
1、网络识图
网络识图是通过图像识别和图片检索的技术,给用户提供海量的图片信息。在用户上传自己需要查找的图片时,网络识图会通过识别图片,在自己的海量图库中给用户展示更多尺寸和更多高清的图片和图片的url地址供用户使用。
网络识图共有4个主要功能:
1、相同图像搜索
用户通过上传的图片进行搜索,网络识图工具会进行识别相似图片,从而提供给用户更多有水印/无水印的的图片,从而满足用户的搜索需求;
2、全网人脸搜索
这个功能是网络识图引入的一种自动人脸识别技术,用户上传图片后,识图工具会将人脸信息在图库中进行搜索对比,能成功的识别出准确的信息反馈给用户;
3、相似图像搜索
这个功能是根据网络的算法对图片进行识别,从海量的图库中提供给用户更多相似的图片;
4、图片知识图谱
知识图谱是根据用户上传的照片进行信息识别,准确的给出用户所需的信息,目前网络主攻的是美女图片及植物网络的只是方面,用户在上传图片后,网络会给出准确的网络等信息,
2、形色APP
形色是一款专注于植物识别的APP,主要是进行花卉识别,目前形色一共有4000种植物,准确率高达92%。另外还有形色地图与社交等功能应用,算是一款比较小众的APP了。
这款APP的界面也是非常简单和小清新了,还有一些文章和社交版块,能够促进用户和用户之间的交流。
3、爱植拍APP
爱植拍是一款AI智能识别植物的神器,内部包含近6万种植物词库,光中国境内植物就包含3万多种,几乎覆盖身边所有常见的花草树木。不认识植物,一拍快速识别呈现植物相关信息。
和形色一样,这款APP也有分享功能,特别适合一些植物的爱好者,也适用于宝妈给孩子进行科普。简直是植物科普神器了!
目前我知道的几款比较好用的就是上面这三个了。如果还有其他比较好的工具也欢迎在下方留言,我会抽空回复。
Ⅳ 人工智能专业好不好
人工智能专业是一个很不错的专业,前景很好,中国正在产业升级,工业机器人和人工智能方面会是强烈的热点,以后很多东西都是人工智能了。我是桂林电子科技大学18级学生,我有一个认识的学弟就是人工智能专业的,我们学校是2020年才有人工智能这个专业的,下面我来具体介绍一下这个专业吧。
04——就业前景
人工智能专业就业方向主要包括科研机构(机器人研究所等)、软硬件开发人员、高校讲师等。在国内的话就业前景是比较好的,国内产业升级,IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点。人工智能目前是一个快速增长的领域,人才需求量大,相比于其他技术岗位,竞争度偏低,薪资相对较高,因此,趁着这个机遇,人工智能专业是一个很好的选择。
05——小结
人工智能专业相当的不错,未来必定是一个人工智能的世界,掌握了人工智能技术,就是一笔不可描述的财富。人工智能不仅能带动国家的发展,还能够方便世界上所有的人,所以,相信自己的感觉,对人工智能感兴趣的同学,来选择这个专业肯定没错的。
Ⅳ 如何用一张图片查昆虫名称
查看图片中昆虫名称的步骤:
1、将需要查询的图片保存在电脑中,然后打开网络APP,找到网络的搜索栏;
(5)知识图谱中怎么输入图片扩展阅读:
网络识图是网络图片搜索近期推出的一项新功能。
“世界很复杂,网络更懂你”,常规的图片搜索,是通过输入关键词的形式搜索到互联网上相关的图片资源,而网络识图则能实现用户通过上传图片或输入图片的url地址,从而搜索到互联网上与这张图片相似的其他图片资源,同时也能找到这张图片相关的信息。
通过图像底层局部特征的比对,网络识图具备寻找相同或近似相同图像的能力,并能根据互联网上存在的相同图片资源猜测用户上传图片的对应文本内容。从而满足用户寻找图片来源、去伪存真、小图换大图、模糊图换清晰图、遮挡图换全貌图等需求。
知识图谱是下一代搜索引擎的趋势,通过对query更精确的分析和结构化的结果展示,更智能的给出用户想要的结果。网络识图除了返回给用户相同、相似搜索结果,也在图片知识图谱方面做出了相应的尝试。2013年网络识图相继上线了美女和花卉两个垂直类图片搜索功能,通过细粒度分类技术(fine-grained classification)在相应的垂直类别中进行更精准的子类别识别。