当前位置:首页 » 美女信息 » 什么是素数
扩展阅读
美女健身跳河视频 2023-08-31 22:08:21
西方贵族美女照片真人 2023-08-31 22:08:15

什么是素数

发布时间: 2022-03-15 10:14:32

㈠ 素数是什么

 素数就是质数,一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数,即素数;否则称为合数。

㈡ 什么叫素数

素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任
何其它两个整数的乘积.例如,15=3*5,所以15不是素数;又如,12
=6*2=4*3,所以12也不是素数.另一方面,13除了等于13*1以
外,不能表示为其它任何两个整数的乘积,所以13是一个素数.
有的数,如果单凭印象去捉摸,是无法确定它到底是不是素数的.有些数则
可以马上说出它不是素数.一个数,不管它有多大,只要它的个位数是2、4、
5、6、8或0,就不可能是素数.此外,一个数的各位数字之和要是可以被3
整除的话,它也不可能是素数.但如果它的个位数是1、3、7或9,而且它的
各位数字之和不能被3整除,那么,它就可能是素数(但也可能不是素数).没
有任何现成的公式可以告诉你一个数到底是不是素数.你只能试试看能不能将这
个数表示为两个比它小的数的乘积.

㈢ 什么是素数

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。所以,质数是合数的基础,没有质数就没有合数。这也说明了前面所提到的质数在数论中有着重要地位。历史上曾将1也包含在质数之内,但后来为了算术基本定理,最终1被数学家排除在质数之外,而从高等代数的角度来看,1是乘法单位元,也不能算在质数之内,并且,所有的合数都可由若干个质数相乘而得到。

㈣ 素数的定义是什么

质数(又称为素数)
1.就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数或素数。还可以说成质数只有1和它本身两个约数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?
2.素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任
何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12
=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以
外,不能表示为其它任何两个整数的乘积,所以13是一个素数。
编辑本段质数的概念
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(1不是质数,也不是合数)着名的高斯“唯一分解定理”说,任何一个整数。可以写成一串质数相乘的积。
编辑本段质数的奥秘
质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。
有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。
说起质数就少不了哥德巴赫猜想,和着名的“1+1”
哥德巴赫猜想 :(Goldbach Conjecture)
内容为“所有的大于2的偶数,都可以表示为两个素数”
这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》)
哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个着名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。
到了20世纪20年代,有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。
1920年,挪威的布朗(Brun)证明了 “9+9 ”。
1924年,德国的拉特马赫(Rademacher)证明了“7+7 ”。
1932年,英国的埃斯特曼(Estermann)证明了 “6+6 ”。
1937年,意大利的蕾西(Ricei)先后证明了“5+7 ”, “4+9 ”, “3+15 ”和“2+366 ”。
1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5+5 ”。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4+4 ”。
1948年,匈牙利的瑞尼(Renyi)证明了“1+c ”,其中c是一很大的自然数。
1956年,中国的王元证明了 “3+4 ”。
1957年,中国的王元先后证明了 “3+3 ”和 “2+3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1+5 ”, 中国的王元证明了“1+4 ”。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1+3 ”。
1966年,中国的陈景润证明了 “1+2 ”[用通俗的话说,就是大偶数=素数+素数*素数或大偶数=素数+素数(注:组成大偶数的素数不可能是偶素数,只能是奇素数。因为在素数中只有一个偶素数,那就是2。)]。
其中“s + t ”问题是指: s个质数的乘积 与t个质数的乘积之和
20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
英文的
prime number: a number that haas exact 2 foctor
编辑本段质数的性质
被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4294967297=641*6700417,并非质数,而是合数。
更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑!
编辑本段质数的假设
17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。
还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。
编辑本段质数表上的质数
现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。

㈤ 什么是素数

质数又称素数.指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数.质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一.基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等.截至2012年六月底,质数尚未完全找到通项公式.
不理解就追问,理解了请采纳!

㈥ 请问什么是素数

只有1和它本身这两个因数的自然数叫做素数.

㈦ 什么是素数

素数就是质数,即除了1和它本身2个因数以外还有其他因数的数(温馨提示:1既不是质数又不是合数)望采纳哦!

㈧ 素数是什么

素数又叫质数(prime number),有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。

质数具有许多独特的性质:

(1)质数p的约数只有两个:1和p。

(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。

(3)质数的个数是无限的。

(4)质数的个数公式

(8)什么是素数扩展阅读:

逆素数:

顺着读与逆着读都是素数的数。如1949与9491,3011与1103,1453与3541等。无重逆素数是数字都不重复的逆素数。如13与31,17与71,37与73,79与97,107与701等。

循环下降素数与循环上升素数:

按1——9这9个数码反序或正序相连而成的素数(9和1相接)。如:43,1987,76543,23,23456789,1234567891。现在找到的最大一个是28位的数:1234567891234567891234567891。

由一些特殊数码组成的数:

如31,331,3331,33331,333331,3333331,以及33333331都是素数,但下一个333333331却是一个合数。特别着名的是全由1组成的素数。把由连续n个1组成的数记为Rn,则R2=11是一个素数,后来发现R19、R23、R317都是素数。

素数研究是数论中最古老、也是最基本的部分,其中集中了看上去极为简单、却几十年甚至几百年都难以解决的大量问题。除了"哥德巴赫猜想"等几个着名问题外,还有许多问题至今未解决。

网络-质数

㈨ 什么是素数  什么是质数

素数,又叫质数.
如果一个自然数,只有除以1和它本身时,可以整除,除以其它任何自然数都不能整除.那么它就叫素数,也叫质数.
否则,叫合数.
比如:29.29只能除以1,可以整除,除以它本身(即除以29),可以整除.除以其它的任何自然数都不能整除,那么29就是素数,也叫质数.
比如:30,30除了可以整除1和30外,还可以整除其它的自然数(如:2,3,5,10),只要其它的自然数存在,那么它就是合数.